Effect of molecular structural isomers in thermal lens spectroscopy

نویسندگان

  • Pardeep Kumar
  • Sirshendu Dinda
  • Debabrata Goswami
چکیده

Article history: Received 7 March 2014 In final form 31 March 2014 Available online 5 April 2014 We explore the importance of molecular structure on thermal lens (TL) spectroscopy by measuring the effects of molecular isomerization on TL measurements. In particular, we present a case study for all the structural isomers of butanol, namely, normal-butanol (n-BuOH), secondary-butanol (s-BuOH), isobutanol (i-BuOH) and tertiary-butanol (t-BuOH). We argue that the molecular isomerization influences the heat convection process in two possible ways: one being a change in the molecular surface area and the other being the steric hindrance. We show that n-BuOH has the highest capability to transfer heat by convection. Branching in the molecular structure renders the system sluggish as it makes the molecular motion successively retarded due to an increase in the mean free path. This we have defined as the molecular drift that slows under thermal conditions. In our studied isomers, therefore, t-BuOH drifts the slowest. 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of Molecular Structure on the Thermophoresis of Binary Mixtures.

Using thermal lens spectroscopy, we study the role of molecular structural isomers of butanol on the thermophoresis (or Soret effect) of binary mixtures of methanol in butanol. In this study, we show that the thermal lens signal due to the Soret effect changes its sign for all the different concentrations of binary mixtures of butanol with methanol except for the one containing tertiary-butanol...

متن کامل

Effect of Thickness on the Structural Properties of Tellurium Film Prepared by Thermal Evaporation

In this research, tellurium (Te) film with thicknesses of 100-250 nm were deposited on ceramic substrates by thermal evaporation at 373 K. The thickness of the film was determined by Rutherford backscattering spectroscopy. The influence of the thickness on the structural, morphological and molecular bonds was characterized using XRD, scanning electron microscope, and Raman spectroscopy. The XRD...

متن کامل

Density functional theory study of the structural properties of cis-trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP)

In present study, the density functional theory (DFT-B3LYP) method with SVP basis set was used for optimizing and studying the electronic structural properties of cis and trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP) as powerful explosives at 298.15 K temperature and 1 atmosphere pressure. And also, Natural Bond Orbital (NBO) population analysis an...

متن کامل

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

Thermal lens technique to study the effect of pH on electronic energy transfer in organic dye mixtures.

The effect of pH on the fluorescence efficiency of fluorescein is evaluated using thermal lens technique. Fluorescence efficiency increases as the sample becomes more and more alkaline. But when fluorescein is mixed with rhodamine B fluorescence quenching of fluorescein takes place with the excitation of rhodamine B. The electronic energy transfer in this mixture is investigated using Optical P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014